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Abstract
Lack of efficient ways to include parameterized error covariance in
ensemble-based local volume solvers (e.g. the local ensemble-transform Kalman
filter – the LETKF) remains an outstanding problem in data assimilation.
Here, we describe two new algorithms: GETKF-OI and LETKF-OI. These algo-
rithms are similar to the traditional optimal interpolation (OI) algorithm in
that they use parameterized error covariance to update each of the local vol-
ume solutions. However, unlike the traditional OI that scales poorly as the
number of observations increases, the new algorithms achieve linear scalability
by using either the observational-space localization strategy of the traditional
LETKF algorithm or the modulated ensembles of the gain-form (GETKF)
algorithm. In our testing with a simple one-dimensional univariate system, we
find that the GETKF-OI algorithm can recover the exact solution within the
truncation bounds of the modulated ensemble and the LETKF-OI algorithm
achieves a close approximation to the exact solution. We also demonstrate
how to extend GETKF-OI algorithm to a toy multivariate system with balance
constraints.
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1 INTRODUCTION

Local volume solvers (such as the local ensemble-
transform Kalman filter – the LETKF) provide excellent
scalability and throughput on modern high-performance
computers. However, to achieve the best possible anal-
ysis with limited ensemble sizes, a hybrid solution is
needed, in which a solution based on the localized ensem-
ble covariance (i.e. the traditional LETKF) is augmented
with a solution based on static (parameterized) covariance
(Buehner et al., 2010). This is usually achieved by

hybridization of the error covariance (Hamill and Sny-
der, 2000):

⎧
⎪
⎨
⎪
⎩

(a) ∶ xa
hyb−P = xf + Pf

hybridHT
[
HPf

hybridHT + R
]−1 [

y −H
(
xf
)]

(b) ∶ Pf
hybrid = 𝛼staticP

f
static + 𝛼ens

(
Cloc◦Pf

ens

)

(1)

where xa
hyb−P is the analysis based on the hybrid covari-

ance Pf
hybrid; Pf

static, Cloc, and Pf
ens are the hybrid covari-

ance, the parameterized static covariance, the localization
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matrix for the flow-dependent ensemble, and the sam-
ple ensemble covariance respectively; 𝛼static and 𝛼ens are
the non-negative weights applied to the static and the
ensemble covariances.

Alternatively, the hybrid solution can be obtained by
taking a weighted average of the ensemble-based and
static-covariance-based analysis as in the hybrid Kalman
gain algorithm of Penny (2014) and later modified by
Bonavita et al. (2015):

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(a) ∶ xinc
static = Pf

staticHT
[
HPf

staticHT + R
]−1 [

y −H
(
xf )]

(b) ∶ xinc
ens =

(
Cloc◦Pf

ens

)
HT

[
H
(

Cloc◦Pf
ens

)
HT + R

]−1 [
y −H

(
xf )]

(c) ∶ xa
hyb−K = xf + 𝛼staticxinc

static + 𝛼ensxinc
ens

(2)

where xa
hyb−K is the hybrid gain solution.

In current practice at many operational centers, the
hybrid solution xa

hyb−P in Equation (1a) and the static solu-
tion xinc

static in Equation (2a) are obtained using variational
solvers. Unlike the LETKF solution, the variational solver
requires substantial inter-processor communications and,
depending on the implementation, can scale poorly with
either the increase in the number of processing units or
with the increase of the analysis grid size. (See Appendix A
for considerations on scalability of the LETKF algorithm
and the variational solvers).

Several studies attempted to obviate the need for
the variational solver in Equations (1a) and (2a) above.
Kretschmer et al. (2015) used samples from the square
root of the climatological error covariance to generate
the climatological (static) ensemble for the LETKF solver.
However, large ensemble size and localization are needed
to develop an effective, high-rank static covariance based
on sampling of the climatological ensemble. Recent stud-
ies in a simplified low-resolution global circulation model
(Kotsuki and Bishop, 2021) showed that, for dense observ-
ing networks, climatological ensembles on the order of
400 members or larger are needed to effectively aug-
ment a flow-dependent covariance model. However, for
such large climatological ensemble sizes, 3DVAR with
parameterized covariance is more computationally com-
pelling compared to an LETKF with a large climatological
ensemble.

Alternatively, Bishop et al. (2015) developed the con-
sistent hybrid ensemble filter (CHEF) algorithm, in which
a sequential data assimilation (DA) method is used to
solve the local Kalman filter problem with an explic-
itly hybridized covariance matrix. However, for a realis-
tic observational network with radiance assimilation, this
method requires holding impractically large covariances
matrixes in memory.

In this work, we start our development by recalling
that the traditional optimal interpolation (OI) algorithm
(Gandin, 1963) is a local volume solver that utilizes a
parameterized covariance matrix Pf

static. The OI solution
for each grid point i is achieved as follows:

xinc
OI (i) = S(i)P

f
staticH

T
(i)

[
H(i)P

f
staticH

T
(i) + R(i)

]−1 [
y(i) −H(i)

(
xf )] (3)

where Pf
static is a parameterized (static) forecast error

covariance model used by the OI, and S(i) is the selec-
tion operator that selects the rows of the state vector
corresponding to the (i)th grid point. The OI algorithms
solves Equation (3) for each grid point (i) independently
based on the observations y(i) closest to each grid point.
To denote local observations, we introduced local versions
of observations y(i), observation operator H(i)

(
xf ), and

observation-error covariance R(i).
However, we also recall that the traditional OI was

largely abandoned in favor of the 3DVAR algorithms
around the end of the 20th century. This was motivated
by several factors. First, as more radiance observations
became available in the early 2000s, the OI algorithm failed
to scale as it requires an inverse of the observation-space

covariance matrix
[
H(i)Pf HT

(i) + R(i)

]−1
in Equation (3),

which scales with the cube of the local observation counts.
Second, OI implementations often used the computation
of the background covariance H(i)Pf HT

(i) which scaled with
the square of the local observation count, and is hard
to implement for radiance assimilation due to the use of
integrals of the vertical quantities. Third, at the time OI
was widely used, the R-localization (Hunt et al., 2007)
had not yet been introduced, and the boundaries of the
local domains could introduce discontinuities in the anal-
ysis. Finally, the migration to the 3DVAR was seen at that
time as an incremental step toward implementation of the
superior 4DVAR algorithm.

In this paper, we rely on several algorithmic devel-
opments that have occurred since the early 2000s. First,
the introduction of observation-space localization through
R-inflation (Hunt et al., 2007) allows more flexibility
in spatial error covariance modeling. Second, introduc-
tion of the local analysis methods (Evensen, 2003; Hunt
et al., 2007) allows for linear scalability with increasing
observation and grid point counts. Also, the development
of the hybrid gain algorithm (Penny, 2014) introduced
independent computation of the static update and ensem-
ble update without the need to specify a hybrid error
covariance, as in Equation (1b). Finally, the introduction
of the ensemble modulation product (Bishop et al., 2011)
showed how ensemble localization can be achieved by
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generating a larger ensemble of “modulated” ensemble
members. We combine these algorithmic advances to
develop a family of scalable DA algorithms that use param-
eterized background error covariances in the context of
the local volume solvers. We name these algorithms, the
LETKF-OI and the GETKF-OI, depending on whether
they use observation-space localization (as in the standard
LETKF) or model-space localization (as in the standard
GETKF).

While the ultimate intention of this work is to develop
accurate, efficient, and scalable algorithms for Earth sys-
tem DA, this paper is focused on the more narrow problem
of showing that the new algorithms can replace the 3DVAR
solution for the central analysis in Equation (2a), and the
Hybrid-3DEnVar solution in Equation (1a). We demon-
strate this potential with two synthetic test problems.
The first test problem is a univariate assimilation into
a one-dimensional model, with prescribed error covari-
ance. The second test problem is the assimilation of two
variables that are related through a geostrophic-like bal-
ance in the same one-dimensional domain. We test the
GETKF-OI in both test problems attempting to replace the
3DVAR solution in Equation (2a) and the Hybrid-3DVAR
in Equation (1a). We only tested LETKF-OI for the uni-
variate case and the 3DVAR context Equation (2a) because
it was not clear how to include balance constraints in the
context of R-localization. We use two sets of experimen-
tal protocols. First, we compare LETKF-OI and GETKF-OI
solutions against reference solutions obtained using a clas-
sic 3DVAR and OI in a simple case of assimilating two
observations. Second, to ensure that our conclusions are
not biased by assimilating a limited set of two observa-
tions, we conduct large randomized studies, where we
vary the number and the locations of assimilated obser-
vations and the ratio of model versus observation system
accuracy.

2 METHODS

In this section, we will first derive the square-root
form of the OI algorithm (GETKF-OI) that represents
the parameterized covariance matrix Pf

static using the
eigenvectors of the parameterized covariance specified
on a local domain. We show similarities of this new
GETKF-OI algorithm and the GETKF algorithm of
Bishop et al. (2017). For the limited case of the univari-
ate problems, we also derive an alternative algorithm
(LETKF-OI) based on R-localization. We conclude by illus-
trating how the new GETKF-OI and LETKF-OI algo-
rithms can be used in hybrid solutions in Equations (1)
and (2).

2.1 Derivation of GETKF-OI

We start derivation of the GETKF-OI algorithm by speci-
fying a parameterized form of the static error covariance
following decomposition commonly used in variational
solvers (Weaver et al., 2005):

Pf
static = KDCDTKT (4)

where K is the multivariate balance operator, D is the
diagonal matrix of forecast error standard deviations, and
C is the block diagonal matrix of univariate correla-
tions. Notice that K is the only multivariate operator in
Equation (4).

We then define an approximate square-root decompo-
sition for Pf

static in Equation (4) based on a truncated series
of eigenvectors:

⎧
⎪
⎨
⎪
⎩

Pf
static = Estatic𝚲static(Estatic)T ≈

√
Pstatic

neigSt

√
Pstatic

neigSt

T

√
Pstatic

neigSt
= Estatic

neigSt

√
𝚲static

neigSt
=
[√

𝜆1e1, … ,

√
𝜆neigSt eneigSt

]

(5)

where Estatic and 𝚲static are the eigenvectors and the eigen-
values of the Pf

static covariance matrix;
√

Pstatic
neigSt

is the trun-

cated square root of Pf
static that retains the leading neigSt

eigen modes; and 𝜆𝑗 and e𝑗 are the jth eigenvalue and
eigenvector.

In general, the truncated square-root decomposition√
Pstatic

neigSt
will be impractical for Pf

static defined on a large
global domain (e.g. it will require a large set of global eigen-
vectors or spherical harmonics to achieve a close approxi-
mation). However, in the context of a local volume solver,
only a portion of the global covariance that corresponds to
the covariance within the scope of the local volume needs
factoring (see Appendix B for how an efficient algorithm
can be constructed for large domains). To simplify cod-
ing for the main part of this paper, we computed

√
Pstatic

neigSt

based on the eigen decomposition of the global covariance
defined on our toy-model domain.

Assuming that the truncated square root of the covari-
ance

√
Pstatic

neigSt
is available, one can rewrite Equation (3) as

follows:

xinc
GETKF−OI(i) ≈ S(i)

√
Pstatic

neigSt

√
Pstatic

neigSt

T

HT
(i)

[

H(i)

√
Pstatic

neigSt

√
Pstatic

neigSt

T
HT
(i) + R(i)

]−1

…

…
[
y(i) −H(i)

(
xf )] (6)
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In most cases, we expect that the number of trun-
cated local eigen modes neigSt will be smaller than the
number of local observations and, hence, it will be more
efficient to perform the inverse in the column space of√

Pstatic
nEigSt

instead of the local observation space as defined
in Equation (6). This can be performed in multiple ways.
Here, we will use the ensemble-transform formula (Hunt
et al., 2007):

xinc
GETKF−OI(i) = S(i)

√
Pstatic

neigSt

[(

H(i)

√
Pstatic

neigSt

)T

R−1
(i)

(

H(i)

√
Pstatic

neigSt

)

+ I

]−1

…

…

[(

H(i)

√
Pstatic

neigSt

)T

R−1
(i)
(
y(i) −H(i)

(
xf ))

]

(7)

Notice that the normalization factor
(

neigSt − 1
)

is
missing in front of the identity matrix I (like one nor-
mally would see in the ETKF formula). This is because√

Pstatic
neigSt

has already been normalized by this factor during
computation of the Pstatic

neigSt
covariance.

We refer to the solution in Equation (7) as GETKF-OI
because of several similarities between (7) and the gain
form of the ensemble transform Kalman filter (GETKF)
introduced in (Bishop et al., 2017). First, similar to
any ETKF filter, we use an ensemble of perturbations,
here – the columns of the

√
Pstatic

nEigSt
defined in Equation (5).

Second, we can show that
√

Pstatic
nEigSt

can be seen as an
operator that modulates a single 1-vector in the GETKF
algorithm.

To show the connection between the static covari-
ance modeling and localization in the model space, we
can rewrite Pstatic

nEigSt
as an operator acting upon the identity

matrix 1 under the Schur product:

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

Pstatic
neigSt

= Pstatic
neigSt

◦1 =
(√

Pstatic
neigSt

√
Pstatic

neigSt

T)

◦
(
iiT)

=
(√

Pstatic
neigSt

Δi
)(√

Pstatic
neigSt

Δi
)T

√
Pstatic

neigSt
vi ≡

[√
pstatic

i=1 ◦i, … ,

√
pstatic

i=neigSt
◦i
]

1 ≡ iiT

(8)

Recall that the identity 1 under the Schur product is
the matrix of ones which is by definition is the outer
product of two 1-vectors i = [1, … , 1]T . Because the num-
ber “1” does not have upper- and lowercase symbols that
we can use to denote the matrix and the vector, we are
using the double underscore and the single underscore

notation to make it explicit that 1 is a matrix and i is a
vector. Then using the definition of the modulation prod-
uct (Bishop et al., 2011),

√
Pstatic

neigSt
Δi is the modulation of

the 1-vector i by the square root of the static covariance
√

Pstatic
neigSt

.

2.2 LETKF-OI approximation
for univariate, homogeneous covariances

While the GETKF-OI algorithm is appropriate for any
covariance that can be modeled using a limited set of
eigenvectors on a local domain, the LETKF-OI algorithm
offers a straightforward implementation for a set of uni-
variate covariance models of the form:

{
Pf = Pf

static = DCDT

C(i, 𝑗) = corr(dist(i, 𝑗))
(9)

where C is a univariate correlation function that only
depends on the distance between two grid points i and
j. In this case, we can approximate the static fore-
cast error covariance model through an action of the
observation-space error inflation used in the traditional
LETKF filter (Hunt et al., 2007).

Recall that R-localization through observation-error
inflation provides an alternative to the model-space local-
ization. The relationship between the two is approximate
(Sakov and Bertino, 2011) with, to our knowledge, no
known derivation that shows the specific approximations
that are taken when model-space localization is trans-
formed into observation-space localization. Since no such
formula exists, we will derive the LETKF-OI algorithms
using the same logical steps that were taken to derive
localization of the ensemble covariance matrix in the
traditional LETKF algorithm. To facilitate this compar-
ison, we list the steps in Table 1, with LETKF deriva-
tion in the left column and LETKF-OI derivation in the
right column. For completeness, we list the final update
formula:

xinc
LETKF−OI(i) = S(i)(Di)(Di)THT

(i) …

…
[
H(i)(Di)(Di)THT

(i) + LstaticR(i)LT
static

]−1
…

…
[
y(i) −H(i)

(
xf )] (10)

where Lstatic is the diagonal matrix that inflates observa-
tional errors based on the distance from the observation to
the grid point (i); i is the 1-vector; and the product Di is
just a vector of forecast error standard deviations.
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T A B L E 1 Derivation of LETKF and the LETKF- OI)∖ algorithms

LETKF derivation LETKF-OI derivation

Kalman gain for localized ensemble in the model space

KKF(i) = S(i) (Cloc◦Pens)HT
(i)

[
H(i) (Cloc◦Pens)HT

(i) + R(i)

]−1
Kinc

OI (i) = SiD
(

Cstatic◦1
)

DTHT
(i)

[
H(i)D

(
Cstatic◦1

)
DTHT

(i) + R(i)

]−1

Approximating B-localization with R-inflation

KKF(i) ≈ KLETKF(i) =

= S(i)XensXT
ensHT

(i)

[
H(i)XensXT

ensHT
(i) + LlocR(i)LT

loc

]−1

KOI(i) ≈ KLETKF−OI(i) =

= S(i)DiiTDTHT
(i)

[
H(i)DiiTDTHT

(i) + LstaticR(i)LT
static

]−1

Note: Most symbols are defined in the main text. The localization distances in Lloc and Lstatic are tuned to produce the best results for localization of the ensemble
Xens and for reconstruction of the impact of the static localization.
Abbreviations: LETKF, local ensemble-transform Kalman filter; OI, optimal interpolation.

Equation (10) can be further seen as an ensemble OI
update with a single ensemble member d = Di. With a
single ensemble member, it will be always more efficient
to use the ETKF formulation that only requires a scalar
inverse:

xinc
LETKF−OI(i) = S(i)Di

[(
H(i)Di

)T(LstaticR(i)LT
static

)−1 (H(i)Di
)
+ I

]−1
…

…
[(

H(i)Di
)T(LstaticR(i)LT

static
)−1 (y(i) −H(i)

(
xf ))

]
(11)

With no formal derivation for R-localization used in
Hunt et al. (2007), and consequently no formal deriva-
tion for Equation (10), we notice that it is hard to
explain why only a single ensemble member (equal to the
standard deviation of the background error) is used in
Equation (10). Here, we offer an intuitive interpretation
of why LETKF-OI in Equation (10) uses a single ensem-
ble member. Recall that a common way to test the impact
of the localization in any ensemble system, is to supply
a single 1-vector as an input to the ensemble algorithm,
use a single unit innovation, and set observational error
equal to one. Then, the analysis increment will depict the
localization function with the maximum at the location of
the single observation. Equation (10) is the generalization
of this idea that also ensures that, in the case of a sin-
gle observation collocated with a grid point, the maximum
increment will be equal to:

max
(
xinc

LETKF−OI(i)
)
=

d2
(i)

d2
(i) + 𝜎

2
ob

(12)

where d2
(i) is the variance of the background error at the

grid point (i) collocated with the observation and 𝜎
2
ob is the

variance of the observational error.

2.3 Hybrid update

2.3.1 Hybrid gain update

Hybrid gain update is straightforward using either
GETKF-OI or LETKF-OI. In this update, two (G)LETKF
solvers will run in parallel, one computing analysis for the
flow-dependent ensemble using the (G)LETKF algorithm
and another for the mean analysis using the (G)LETKF-OI
algorithm in Equations (7) or (11). The two analyses are
then combined using Equation (2) to obtain a new hybrid
analysis mean for the posterior ensemble.

2.3.2 Hybrid covariance update

Hybrid covariance update in Equation (1a) is possible by
forming an augmented modulated ensemble:

Xhybrid =
[( √

𝛼ens

nens − 1

√
Cloc

neigLoc
ΔXens

)

,

(
√
𝛼static

[√
Pstatic

neigSt
Δi

])]

(13)

where neigLoc and neigSt are the number of modes retained

in
√

Cloc
neigLoc

and
√

Pstatic
neigSt

respectively; Xens are the original
ensemble perturbations for the flow-dependent ensem-
ble; and

√
𝛼ens and

√
𝛼static are the square roots of

the scalar weights in Equation (1b). Following Bishop
et al. (2017), one might choose to only update the origi-
nal flow-dependent members Xens of the complete hybrid
ensemble Xhybrid (see equation 10 in Lei et al., 2018).

Notice that different modulation matrixes
√

Cloc
neigLoc

and
√

Pstatic
neigSt

are needed to specify Xhybrid in Equation (13).
Hence, it is not possible to use R-localization with a single
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observation localization scale to replace modulation prod-
ucts in Equation (13). As our paper was developed, a third
form of localization (Z-localization) was introduced in the
literature (Kotsuki and Bishop, 2021) that allows for spec-
ification of different localization scales for the dynamic
and the climatological part of the hybrid ensemble by
tapering of the ensemble perturbations similar to Sakov
and Bertino (2011). We did not compare our results to
Z-localization.

3 TESTING METHODOLOGY

3.1 Univariate model

We tested the (G)LETKF-OI algorithm using a simple sta-
tistical model. In this model, we specify the true forecast
error correlation matrix Cstatic using the Gaspari and Cohn
(GC99) correlation function (Gaspari and Cohn, 1999) on
a circular domain of length 100 and a horizontal decorre-
lation scale of 22 grid points (correlation decays from one
to zero in 22 points). The true error variance diag(DDT)
varies with a maximum of 1 at the boundaries and a min-
imum of 0.5 at the grid point 50 (see Figure 1b). The com-
bined true error covariance Pstatic = DCstaticDT is shown in
Figure 1a.

A random draw of the state 𝜂 of the univariate state was
obtained as:

{
𝛈 = D

√
Cstaticr𝜂

r𝜂 ∶ N(0, I)
(14)

3.2 Multivariate model with a balance
constraint

To test the GETKF-OI algorithm in the multivariate
problem, we extend the 1D problem in Section 3.1 using a
geostrophic-like balance, where the second (velocity-like)
variable u is related to the first (height-like) variable 𝜂 in
Equation (14) as follows:

{
u = k 𝜕𝜂

𝜕x
+ 𝛽D

√
Cstaticru

ru ∶ N(0, I)
(15)

where k is a unit conversion factor (we use a factor of
−10), 𝛽 is the variance-scale factor that specifies the ratio
of the unbalanced u perturbations compared to the scale
of the balanced perturbations (we use 𝛽 = 1∕3), and ru is a
random state drawn from a normal distribution. The first
term on the right in Equation (15) is the balanced part of
u (which encodes a linear relationship between u and 𝜂)

and the second term is the unbalanced term. In geophysi-
cal fluid dynamics, the first term might take the form of a
geostrophic flow while the second term will correspond to
ageostrophic flow.

In matrix notation, a random draw of the multivariate
state can be written as:

[
𝜂

u

]

= KD𝜂,u
√

C𝜂,ur𝜂,u

=

[
I 0

k𝚫 I

][
D 0
0

√
𝛽D

][√
C 0

0
√

C

]

r𝜂,u (16)

where 𝚫 is the differentiation operator implementing 𝜕𝜂

𝜕x
(we used centered difference). The static error covariance
for the multivariate model is shown in Figure 2.

3.3 Localization parameters
and sample ensemble

We specified model-space localization matrix Cloc
in Equation 2 using the Gaspari-Cohn localization
function with decorrelation scale of 40 grid points.
Observation-space localization was tuned for each
experiment, with optimal values listed in Section 3.4.2.

For tests in the univariate model, we retained neigLoc = 7
and neigSt = 13 in Equation (13), which retained 99% of the
original variance. For the multivariate case, we retained
neigSt = 25.

To illustrate the fidelity of the sample covariance and
the localization, Figure 3 compares the true covariance
(thick black) with sample ensemble covariance Pens (dot-
ted red), localization function Cloc (dash blue), and the
localized ensemble covariance

(
Cloc◦Pf

ens

)
(thin blue) in

the univariate case. As expected, Figure 3 shows that
the sample ensemble covariance (dotted red) provides a
noisy estimate for both the correlations and the variance
(true variance of 0.5 and sample estimate of 0.35). While
the localization is effective at attenuating the erroneous
long-distance correlations, localization is unable to fix a
poor estimate of the sample error variance.

The error in the variance estimate is proportional to
1∕
√

nens. In the case of sampling from the static error
covariance, for example as in (Kretschmer et al., 2015;
Kotsuki and Bishop, 2021), one can compensate for the
sampling error by rescaling the climatological ensemble
to match the prescribed static error variance. However,
in the case of the flow-dependent ensemble shown in
Figure 3, such a rescaling is not possible as any given sam-
ple can either overestimate or underestimate unknown
flow-dependent error variance.
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F I G U R E 1 Static error covariance (a) and error variance (b) in the univariate model [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 2 True error covariance for the multivariate model
[Colour figure can be viewed at wileyonlinelibrary.com]

3.4 Testing protocol

We conducted two series of tests in this paper. The first
series tested the ability of the new algorithms to accurately
reproduce assimilation increments from well understood
algorithms like 3DVAR, OI, or global hybrid solutions in
Equations (1) and (2). To gain intuitive understanding of
the results, these tests were conducted by assimilating just
two measurements located within a correlation distance
from each other (see details in Section 3.4.1).

The second family of tests randomized the experi-
ment configuration to eliminate the possibility that our
conclusions are biased by the simplicity of the double

F I G U R E 3 Comparison of cross-covariance between grid
point 50 and the rest of the state in the univariate case for: (thick
black) true error covariance; (dotted red) sample error covariance
generated using 50 ensemble members; (dash blue) localization
function; and (solid blue) localized sample covariance [Colour
figure can be viewed at wileyonlinelibrary.com]

observation experiment. See details of randomized tests in
Section 3.4.2.

3.4.1 Two observation test case

To test the equivalence between the two methods, we
compared the increments by assimilating a pair of
observations. In the univariate case, the 𝜂 variable was

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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observed at grid points 35 and 55. In the multivariate case,
we only assimilated an 𝜂 observation at point 35 and a u
observation at point 55. The magnitude of the innovation
(y-H[xf ]) was one. The observational error was equal to
the prior error variance. We chose to use two observations
located within the correlation influence of each other to
verify that our implementation correctly represents inter-
action of two observations.

To quantify the difference between the control incre-
ment xinc

cntrl and the increment from a new experiment xinc
exp,

we used the normalized root mean square error (NRMSE):

NRMSE = 100 ∗
‖
‖
‖

xinc
cntrl − xinc

exp
‖
‖
‖2

‖
‖
‖

xinc
cntrl

‖
‖
‖2

% (17)

3.4.2 Randomized tests

To test how the approximation errors in the (G)LETKF-OI
algorithms change as a function of observation density
and the ratio of the observation to forecast error, we con-
ducted experiments with 1000 trials each. In each trial a
random number of observations were selected and placed
in a random number of locations in the domain. Each trial
generated innovations by observing a randomly drawn
state from the true covariance model. Randomly drawn
observation errors, consistent with the R covariance, were
added to the innovation vector. We tested three levels of
ratios between observation and forecast error variances
(R2P ratio) equal to 1/5, 1, and 5. For each value of the R2P
ratio, we tuned the R-inflation parameter in the LETKF-OI
algorithm, with the optimal values of Gaspari-Cohn local-
ization distance of 9.2, 13.2, and 18.0 respectfully. The
approximation errors were computed using Equation (17)
where we used the true “twin” increment as xinc

cntrl.

4 RESULTS

4.1 Univariate case

4.1.1 Comparison of algorithms with the
static covariance update

Figure 4 shows that the global 3DVAR solution and the
local OI solutions can recover almost identical analysis
increments (compare thick black line and blue crosses,
NRMSE of 0.01%). When we used GETKF-OI algorithm in
Equation (7), we produce the analysis increment that was
indistinguishable from either 3DVAR or the OI algorithms
(NRMSE = 0.7%). This is expected as the only approxima-
tion of the GETKF-OI algorithms compared to the classical

F I G U R E 4 Comparison of global 3DVAR increment for the
univariate case with three local solutions: (thick black) global
3DVAR solution; (blue cross) traditional OI; (green circle)
GETKF-OI using Equation T.7; and (red thin line) LETKF-OI using
Equation T.8. Table 2 also lists specific formulas used to compute
analysis increments in this figure. [Colour figure can be viewed at
wileyonlinelibrary.com]

OI algorithm is that we truncated the eigen spectrum of
the static correlation matrix Pstatic to retain 99% of the
variance. By comparison, the LETKF-OI algorithm that
relies on the R-inflation for horizontal localization pro-
duces a very close (but not perfect) approximation to the
3DVAR analysis increment (compare solid black and red
lines, NRMSE = 8%). This difference is expected as the
R-inflation is an approximation to model-space localiza-
tion, and the two are not equivalent.

4.1.2 Comparison of algorithms with the
hybrid covariance update

Figure 5 shows that all four hybrid updates produce
practically indistinguishable increments (less than 1%
NRMSE difference from the global hybrid-P in Equation
T.2). The four algorithms considered include global (cir-
cle and cross) and local (solid lines) updates with hybrid
error covariance formula (blue) and hybrid gain (red).
The equivalence between local and global hybrid gain fol-
lows from a close correspondence of the 3DVAR and
GETKF-OI solutions found in Figure 4. The equivalence
between the global and local hybrid covariance update
follows from our ability to express the global hybrid
covariance Phyb as an augmented ensemble of modu-
lated static and flow-dependent ensemble members (see
Equation 13).

http://wileyonlinelibrary.com
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F I G U R E 5 Comparison of global and local hybrid
increments. (blue circle) Global hybrid P solution (Equation T.2);
(blue solid) local hybrid P solution using augmented ensemble
(Equation T.10); (red cross) global hybrid gain solution (Equation
T.4); and (red solid and Equation T.9) local hybrid gain solution.
Table 2 lists specific formulas used to compute analysis increments
in this figure [Colour figure can be viewed at
wileyonlinelibrary.com]

4.1.3 Approximation errors

Figure 6 shows that in large randomized studies, all three
methods (LETKF-OI, GETKF-OI, and global 3DVAR) pro-
duce similarly accurate reconstructions of a random true
state. Figure 6 shows that GETKF-OI and 3DVAR pro-
duce almost numerically indistinguishable results despite
truncation of the covariance spectra in GETKF-OI. Inter-
estingly, the LETKF-OI algorithm has very similar average
NRMSE errors. This is despite the fact that there were
about 10% differences between the LETKF-OI and the
3DVAR increment. We attribute this to the fact that the
ability of the DA algorithm to reproduce a true “twin”
state was in large part determined by the imperfections of
the observing network due to sampling density and added
observational noise.

4.1.4 Limitations of the LETKF-OI
algorithm

Figure 7 shows that LETKF-OI’s performance depends on
the observation density (number of observations with a
correlation scale). The errors are minimal when obser-
vations are sparse (RMSE = 7% for obs. density< 1)
and increase as observations get closer (maximum RMSE
of 18% when 6.6 observations were present within a
single correlation scale). Furthermore, Figure 7 shows that

F I G U R E 6 NRMSE for global 3DVAR and local LETKF-OI
and GETKF-OI solutions in randomized trials as a function of R2P
ratio. Mean error is shown with solid bars and the standard
deviation of error is shown with vertical bars. Abbreviations:
GETKF, gain-form ensemble-transform Kalman filter; LETKF, local
ensemble-transform Kalman filter; NRMSE, normalized root mean
square error; OI, optimal interpolation [Colour figure can be viewed
at wileyonlinelibrary.com]

optimal observation localization length scale is a function
of observation density (18 grid points for isolated obser-
vations and 12 grid points for dense observations). Both
optimal length scales are shorter than the “true” corre-
lation scale (shown with the solid line) that was used to
generate the “twin” solution.

In a realistic scenario, observation densities are likely
to change in space and a single localization scale might not
be optimal. Figure 8 illustrates this scenario by comparing
the increment for the 3DVAR (blue line), the LETKF-OI
increment optimized for the sparse observing network (red
line), and the LETKF-OI increment for the dense observ-
ing network (yellow line). When a single observation is
assimilated, it is possible to tune LETKF-OI to reproduce
the reference 3DVAR solution closely (compare blue and
red lines in Figure 8a). However, if we use LETKF-OI
tuned for high observation densities to assimilate sparse
observations, we produce an increment that is markedly
different from the optimal LETKF-OI or the reference
3DVAR increment (compare the yellow line to the red and
blue lines in Figure 8a). Similar situation occurs when we
use LETKF-OI tuned for a single observation to assimilate
dense observations (the red line in Figure 8b is too smooth
compared to the blue and the yellow lines).

To further understand the reason behind the degrada-
tion of the LETKF-OI approximation with dense observ-
ing networks, we plotted (Figure 9) the eigen spectra for
the local matrix (H(i)PH(i)

T+ R(i)) where (i) is for the

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 7 LETKF-OI approximation error. (a)
Approximation error (shown in color) as a function of observation
density (x-axis) and observation localization scale (y-axis). Lines in
(a) indicate: (solid line) correlation scale for the covariance used in
the 3DVAR increment; (dashed line) observation localization tuned
using a single observation; (stars) observation localization scale
optimized for specific observation density. (b) Approximation error
for the optimal tuning of localization as a function of observation
density (e.g. approximation errors at the location of * in a). Errors
were computed compared to the 3DVAR increment using 30
randomly drawn innovations. Abbreviations: LETKF, local
ensemble-transform Kalman filter; OI, optimal interpolation
[Colour figure can be viewed at wileyonlinelibrary.com]

50th grid point. Figure 9 shows that unlike the 3DVAR,
the LETKF-OI expression is poorly conditioned (condi-
tion number of 4,599 vs 14). The LETKF-OI spectrum
also has just a few eigen clusters while the 3DVAR spec-
trum decays gradually. We interpret these results as the
LETKF-OI having fewer degrees of freedom to model

F I G U R E 8 Increments produced by assimilating a single
observation (a) and 50 randomly distributed observations (b)
[Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 9 Eigen spectra of the local (H(j)PH (j)
T + R (j))

with every grid point observed in the local volume. Abbreviations:
LETKF, local ensemble-transform Kalman filter; OI, optimal
interpolation [Colour figure can be viewed at
wileyonlinelibrary.com]

the interaction of the dense observations located within
a single correlations scale. Specifically, LETKF-OI does
not account for correlations between observations within
a volume while GETKF-OI, 3DVAR, and OI all allow
for such observation–observation correlations. This is

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 10 Comparison of increments for the multivariate test problem. The top panel shows increment to 𝜂 and bottom to u
variable. The left column shows increments from deterministic algorithms (3DVAR, OI, and GETKF-OI) and the right column shows
increments for hybrid algorithms (global and local version of the hybrid covariance and hybrid gain). Vertical lines show location of the 𝜂

observation (solid black line) and of the u observation (dotted black line). Table 2 lists specific formulas used to compute analysis increments
in this figure. Abbreviations: GETKF, gain-form ensemble-transform Kalman filter; OI, optimal interpolation [Colour figure can be viewed at
wileyonlinelibrary.com]

consistent with the finding of Wang et al. (2021) that
observation-space localization results in a lower rank
ensemble than modulated ensemble in the GETKF solver.

4.2 Multivariate case

Figure 10 shows that when we assimilate two observa-
tions (𝜂 located at point 35 and u located at point 55),
the GETKF-OI algorithm (green circle in panels a and
b) can effectively reproduce reference solutions (3DVAR
and OI, solid black line and blue crosses in panels a and
b). Figure 10 also shows that the local and global hybrid
solutions are equivalent, which is expected given a close
approximation of the GETKF-OI solution to the 3DVAR in
Figure 10a,b.

5 SUMMARY

In this paper, we derived a new class of local data assimila-
tion algorithms that can be used for DA using hybrid and
parameterized static error covariances. Using a simple sta-
tistical model for a one-dimensional problem, we demon-
strated that it is possible to achieve numerical equiva-
lency between the 3DVAR-like global algorithm with a
parameterized covariance and the new GETKF-OI update
algorithm. The modulated ensemble in the GETKF-OI is
achieved through modulation product of the truncated
square root of the parameterized covariance and a single

1-vector. A similar result was achieved for a hybrid error
covariance matrix. We note that for large model domains,
storing of the truncated square roots of the parameterized
covariance required by GETKF-OI is impractical. Instead
we point out (see Appendix B for details) that in the con-
text of the local volume solver it is sufficient to store the
leading eigenvectors of the covariance function defined on
the footprint of the local volume.

We also showed that for a univariate case, with a
potential gain in the computational speed and a straight-
forward implementation, it is possible to achieve close (but
not perfect) correspondence between the 3DVAR solu-
tion and the LETKF-OI algorithm. This single ensem-
ble member used by the LETKF-OI is set to be equal to
the standard deviation of the forecast error. Close exam-
ination of the tuning required for LETKF-OI to repre-
sent the reference 3DVAR solution illuminated limita-
tions of the R-localization that are often obscured when
it is used to localize ensemble-based covariance matrixes.
Specifically (see Figure 8 for details), we find that: (a)
the tuned observation-space localization length scale is
always shorter than the length scale of the correspond-
ing model-space covariance; (b) the value of the tuned
observation-space’s localization depends on the density
of the observing network; and (c) LETKF-OI does not
account for correlations between observations within a
local volume.

Finally, using large randomized trials, we found that
the global 3DVAR, GETKF-OI, and LETKF-OI could all
reconstruct the randomly-generated true solution with

http://wileyonlinelibrary.com
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equal accuracy. This was despite the fact that there was
about a 10% difference between the 3DVAR and LETKF-OI
increment. We attribute this similarity between the three
systems to the fact that in practice, as well as in our ran-
domized studies, the accuracy of the DA reconstruction is
determined by the density and the accuracy of the obser-
vation network.

6 DISCUSSION

The findings of this paper are encouraging and pro-
vide DA algorithm designers with a new opportunity to
use parameterized covariance modeling in highly-scalable
LETKF-like DA algorithms. We speculate that addition
of the high-rank static covariance model in the GETKF
algorithm can improve the quality of the flow-dependent
ensemble and possibly allow for cycling systems with
smaller numbers of flow-dependent ensembles without
degradation in the analysis and forecast skill scores. Exten-
sive testing in real-world applications will be essential to
understand the benefits and the limitations of the pro-
posed algorithms. Our initial application of the LETKF-OI
algorithm to the assimilation of snow-fall data shows
promise and will be presented in a separate publication.

We expect that further progress in cycling systems
with multivariate balances (like the ocean and the atmo-
sphere) will require further development of the GETKF-OI
approach described here. This will involve experimenta-
tion with realistic oceanic and atmospheric observations
and backgrounds. Comparisons with reference 3DVAR
solutions and evaluations of the impact of hybrid update
on the ensemble members will be essential. We suspect
that it would be possible to model the static covariance
as a separable process, with a separate set of eigenvec-
tors for the vertical and horizontal correlation functions.
Such implementation can be similar to: (a) Lei et al. (2018),
where the GETKF algorithm is used to assimilate satellite
radiances that represent vertical integrals of atmospheric
quantities; and (b) Wang et al. (2021) who used eigen-
vectors to characterize horizontal multi-scale correlation
functions. The Joint Effort for Data Assimilation Inte-
gration (JEDI) framework provides a unique opportunity
for developing GETKF-OI algorithms because it provides
the reference 3DVAR solutions, vertical balance opera-
tors, and variable transforms needed to capture horizontal
balances.
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APPENDIX A: CONSIDERATIONS ON THE
SCALABILITY OF THE 3DVAR-LIKE AND
LETKF-LIKE ALGORITHMS

While the scalability of the LETKF and GETKF are well
established (Bishop et al., 2017; Kotsuki and Bishop, 2021),
scalability of the 3DVAR-like algorithms with a parame-
teric covariance function have strong dependence on the
implementation of the matrix–vector product of the state
vector and the parameterized covariance:

a = Pstaticx (A1)

Several implementations of the Equation (A1)
exist, including spherical harmonics and wavelet
basis (Fisher, 2003), diffusion operator (Weaver and
Courtier, 2001), recursive filters (Purser et al., 2003),
explicit convolution on a sparse grid (Ménétrier and
Auligné, 2015), and direct computations (Rosmond and
Xu, 2006; Cummings and Smedstad, 2013). All of the
above methods have different computational cost for a
given problem size and different scaling performance with
the increase in the number of processing units (strong
scaling) or the problem size (weak scaling). However, all of
the above methods are characterized by the need for global
communication that often limits practical scalability of
the Equation (A1).

Of the above-mentioned methods, we can further
comment on the practical scalability of the spherical
harmonics and explicit convolution—possibly the two
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fastest implementations for Equation (A1) for existing
global model grids. Following (Chatterjee et al., 2018;
Bauer et al., 2020), the computational cost and the scal-
ability of the spectral transforms is limited by the global
fast Fourier transform algorithms that are communication
bound due to use of all-to-all communications in the global
matrix transpose and matrix–matrix multiplications. The
explicit convolution methods (Normalized Interpolated
Convolution from an Adaptive Subgrid—NICAS) of
(Ménétrier and Auligné, 2015) provide one of the fastest
implementation of the Equation (A1). In part, because
NICAS utilizes sparse grids that are determined by the
length scales of the correlation functions and not by the
resolution of the analysis grid. Ménétrier (2020) provides a
formal analysis of the communication and computational
costs for NICAS. The computational costs on a global grid
scale with the sixth power of the sparse grid resolution
and the communication costs scale with the square of
the number of the processing elements. It is important to
note that there is an upper limit to the communication
scalability of the NICAS software that depends on the cor-
relation scales of the grid. This limit is on the order of
∼200–800 processing-elements for correlation scales typ-
ical in the atmosphere (2,000–1,000 km) and is closer to
3,000 processing-elements for correlation scales typical for
the ocean (500 km).

The attractive feature of the LETKF algorithm is that
local analyses are computed independently. This leads to
linear strong scaling of LETKF (linear speed up with an
increase in processing elements given a fixed size of the
problem). The weak scaling of the LETKF-like algorithms
(scaling with the increase of the computational problem)
has three components: (a) scaling with the number of grid
points, (b) scaling with an increase in the ensemble size,
and (c) scaling with increase in the observational den-
sity. Given fixed ensemble size and observational density,
LETKF/GETKF algorithms scales linearly with increase
in number of grid points since each local analysis is com-
puted independently. For example, doubling of the resolu-
tion on the 2D global grid will lead to 4-fold increase in the
number of local analyses that needs to be computed. This is
compared to a factor of 64 increase in the number of com-
putations required by the NICAS software for doubling of
the horizontal resolution of the sparse grid.

Central to the local analysis update in Equation (7) and
T.7 is the computation of the following matrix inverse (size
of the number of ensemble members):

[
(HZ)T(i)R

−1
(i) (HZ)(i) + I

]−1
(A2)

where (HZ)(i) is the matrix of the ensemble perturba-
tions in the observational space local to the grid point

(i) (size of the number of observations by the number of
ensemble perturbations); R−1

(i) is the inverse of the diag-
onal matrix (size of the number of observations); and I
is the identity matrix (size of the number of ensemble
members). The computation cost of A2 consists of the cost
of the matrix–matrix product (equal to n2

ensnlocal.obs.), and
the cost of the matrix inverse (scales as n3

ens or better). In
most cases, the number of local observations exceeds the
number of ensemble perturbations (Hamrud et al., 2015),
hence, the dominant cost of A2 is the matrix–matrix mul-
tiplication followed by the cost of the matrix inverse. Cost
estimate of A2 also suggests that LETKF-like algorithms
scale as a cube of the number of ensemble members and
have linear scalability with an increase in the number of
local observations.

APPENDIX B: FAST ALGORITHM FOR
ENSEMBLE MODULATION IN A LOCAL
VOLUME

In this paper, as well as in the multiscale localization paper
of Wang et al. (2021), one faces a problem of efficient com-
putations of the observations for the modulated ensemble:

H(
√

CΔX) =
[
H
(√

c1◦x1

)
, … ,H

(√
ci◦x𝑗

)]
(B1)

where H
(√

ci◦x𝑗

)
is the observation of the x𝑗 ensemble

member modulated by the
√

ci column of the modula-
tion matrix. In the context of this paper, Equation (B1) is
further simplified as:

H
(√

Pstatic
neigSt

Δi
)

= H
√

Pstatic
neigSt

(B2)

where
√

Pstatic
neigSt

is the truncated square root of the static
covariance.

F I G U R E B1 Number of EOFs required to represent 98% of
the global correlation matrix as the size of the global 1D domain
increases [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E B2 Global
correlation matrix as a composition
of local correlation matrices
interpolated on a global domain
using mapping M(i) [Colour figure
can be viewed at
wileyonlinelibrary.com]

For a small domain considered in this paper,
√

Pstatic
neigSt

can be approximated by taking a square root of the global
covariance matrix. However, as a size of the domain
increases in comparison to the correlation length, one
needs to retain an increasing number of eigenvectors
(Figure B1)—linear in 1D but potentially cubic increase
for 3D.

Here, instead of storing the square root of the global
covariance matrix

√
Pstatic

neigSt
, we instead propose to store

the local square root
√

Pstatic
neigSt (local)

defined in normalized
coordinates [−1:1] (with the center of the volume at 0
and correlations decaying to zero for normalized coordi-
nates outside of this [−1:1] range). The local square root√

Pstatic
neigSt (local)

can then be related to the global square root
√

Pstatic
neigSt

by developing a linear mapping operator M(i) (see
Figure B2). Then Equation (B2) can be re-written as:

H(i)

√
Pstatic

neigSt
= H(i)M(i)

√
Pstatic

neigSt (local)
= H(local)

√
Pstatic

neigSt (local)
(B3)

where H(local) = H(i)M(i) is the observation operator that
can operate in the local coordinates. In Figure B2 we
demonstrate a case where the global correlation matrix

(panel a) is defined on the domain that is three times the
size of the correlation length scales. Figure B2 illustrates
how operator M(i) maps correlation matrix defined in the
normalized local coordinates (panel b) onto the global
domain in panel a.

Equation (B3) provides great computational savings
for large global domains by reducing the storage for√

Pstatic
neigSt

. However, in the context of the local volume solver,
Equation (B3) also requires re-observing the same observa-
tion locations as they repeat in overlapping observational
domains. In case global observation operator H is used
to observe local covariance imbedded in a global domain,
the observation operation can become expensive if obser-
vation operator requires substantial MPI communication.
Hence, we advocate that a practical implementation of the
GETKF-OI algorithm in large domains will benefit from
development of linearized observational operator H(local)
that can operate in the local coordinate system. In a special
case of point observations and the

√
Pstatic

neigSt (local)
considered

in this paper, the implementation of the H(local) is reduced
to the interpolation of eigen columns of

√
Pstatic

neigSt (local)
to the

observation locations in the reference frame of the local
volume. That is, we suggest that observation of the modu-
lated ensemble can be replaced by linear interpolation of
eigenvectors.
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